Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

LiBin Gao,* Liyi Zhang and Zhongning Chen

State Key Laboratory of Structural Chemistry, FuJian Institute of Research on the Structure of Matter, Fuzhou, FuJian, 350002, People's Republic of China

Correspondence e-mail: gaolibinhotmail@sohu.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.018 \text{ Å}$ H-atom completeness 96% R factor = 0.086 wR factor = 0.199 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(μ_2 -anilinopyridinato- $\kappa^2 N:N'$)aquadiruthenium(II,III) hexafluoroantimonate diethyl ether solvate

The title complex, $[Ru_2(C_{11}H_9N_2)_4(H_2O)][SbF_6]\cdot C_2H_{10}O$, has a diruthenium(II,III) unit bridged by four PhNpy ligands. There is an axial aqua ligand on the ruthenium(III) atom. The $Ru \cdot \cdot \cdot Ru$ distance is 2.288 (1) Å. Received 11 March 2003 Accepted 28 May 2003 Online 10 June 2003

Comment

In the chemistry of multiple-bonded diruthenium complexes, a variety of diruthenium compounds have been reported (Cotton & Walton, 1985; Tooze et al., 1984; Chakravarty & Cotton, 1975) many years ago. In most cases, spectroscopic and electrochemical studies on the diruthenium complexes show that modification of the axial ligand usually results in a dramatic shift of the visible band energy and the redox potentials. These complexes of Ru^{II}-Ru^{III} are quite different from those of other dimetallic species. The cationic species $[Ru_2(\mu_2-PhNpy)_4\cdot H_2O]^+$ consists of a diruthenium core held together by four PhNpy ligands. The ruthenium(III) atom that is bonded to pyridine N atoms has an axial H₂O, while the axial site on the other ruthenium(II) atom is vacant. The molecular structure of Ru₂Cl(PhNpy)₄ has already been reported (Chakravarty et al., 1985). The two molecules are very similar in structure, except that the Ru-Cl bond in $Ru_2Cl(PhNpy)_4$ is replaced by $Ru-OH_2$. This change has a small effect on the Ru-Ru distance, which changes from $Ru_2Cl(PhNpy)_4$ to 2.275 (3) Å in 2.288 (1) Å in $[Ru_2(ap)_4(H_2O)](SbF_6)$. The average $Ru^{II}-N$ distance is 2.014 (6) Å, but Ru^{III} – N is 2.056 (8) Å in the title compound, the O1-Ru1-Ru2 angle being $178.80 (18)^{\circ}$.

Experimental

The title compound was synthesized by the reaction of $Ru_2Cl(PhNpy)_4$ with a small excess of $AgSbF_6$ in methanol–dichloromethane in the dark for 12 h. The solution changed from blue to deep red. After filtration, the filtrate was evaporated under vacuum to leave a red residue, which was dissolved in dichloromethane. Well shaped crystals suitable for X-ray diffraction measurement were grown by layering diethyl ether onto the solution.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

 $D_x = 1.667 \text{ Mg m}^{-3}$

Cell parameters from 5202

Mo $K\alpha$ radiation

reflections

 $\theta = 1.3-22.5^{\circ}$ $\mu = 1.25 \text{ mm}^{-1}$

T = 293 (2) K

 $\begin{aligned} R_{\rm int} &= 0.048\\ \theta_{\rm max} &= 25.1^\circ \end{aligned}$

 $h = -11 \rightarrow 11$

 $k = -26 \rightarrow 24$

 $l = -25 \rightarrow 14$

Block, deep red

 $0.72 \times 0.46 \times 0.30 \ \mathrm{mm}$

8405 independent reflections

5834 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 41.132*P*]

 $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.75 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

Crystal data

$$\begin{split} & [\mathrm{Ru}_2(\mathrm{C}_{11}\mathrm{H}_9\mathrm{N}_2)_4(\mathrm{H}_2\mathrm{O})] - \\ & [\mathrm{SbF}_6]\cdot\mathrm{C}_4\mathrm{H}_{10}\mathrm{O} \\ & M_r = 1206.83 \\ & \mathrm{Monoclinic}, P2_1/n \\ & a = 10.1385 \ (1) \ \mathrm{\AA} \\ & b = 22.5901 \ (5) \ \mathrm{\AA} \\ & c = 21.0672 \ (5) \ \mathrm{\AA} \\ & \beta = 94.860 \ (1)^\circ \\ & V = 4807.67 \ (16) \ \mathrm{\AA}^3 \\ & Z = 4 \end{split}$$

Data collection

Siemens SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.433, T_{max} = 0.687$ 15139 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.086$ $wR(F^2) = 0.199$ S = 1.178405 reflections 604 parameters H atoms constrained

Table 1

Selected geometric parameters (Å, °).

Ru1-O1	2.012 (6)	Sb-F4	1.719 (17)
Ru1-N7	2.048 (8)	Sb-F3	1.781 (18)
Ru1-N3	2.054 (8)	Sb-F6	1.820 (17)
Ru1-N1	2.056 (8)	C44-C45	1.369 (17)
Ru1-N5	2.067 (9)	C45-C46	1.366 (15)
Ru1-Ru2	2.2882 (11)	C52-C53	1.422 (15)
Ru2-N8	2.007 (8)	C83-C84	1.357 (19)
Ru2-N6	2.022 (8)	C85-C86	1.385 (16)
O1-Ru1-N7	91.3 (3)	C52-N6-Ru2	120.5 (7)
N7-Ru1-N3	87.9 (3)	C76-N8-C81	109.5
N3-Ru1-N1	90.3 (3)	N1-C12-C13	123.5 (11)
N1-Ru1-N5	91.4 (3)	C14-C15-C16	119.1 (11)
N7-Ru1-Ru2	89.8 (2)	C23-C22-C21	120.1 (11)
N8-Ru2-N2	179.2 (3)	C43-C42-C41	121.0 (11)
N2-Ru2-N4	89.6 (3)	C46-C45-C44	120.8 (11)
N4-Ru2-Ru1	89.5 (2)	C54-C53-C52	120.9 (13)
F4-Sb-F5	91.6 (10)	C64-C63-C62	120.2 (14)
F4-Sb-F2	83.8 (11)	C74-C75-C76	117.9 (12)
F4-Sb-F6	167.6 (12)	C83-C82-C81	119.6 (12)
C12-N1-Ru1	121.9 (7)	C84-C85-C86	120.4 (13)
C36-N4-Ru2	120.8 (6)		. ,

The H atoms were positioned geometrically (C–H bond length fixed at 0.96 Å), assigned isotropic displacement parameters and allowed to ride on their parent C atoms before the final cycle of least-squares refinement.

Data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1996); data reduction: XPREP in SHELXTL

Figure 1

A view of the structure of (I), with partial atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

(Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSF of China (No. 20171044).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakravarty, A. R. & Cotton, F. A. (1975). Inorg. Chem. 24, 3584-3589.
- Chakravarty, A. R., Cotton, F. A. & Tocher, D. A. (1985). *Inorg. Chem.* 24, 172–177.
- Cotton, F. A. & Walton, R. A. (1985). Struct. Bonding (Berlin), 62, 1-49.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tooze, R. P., Motevalli, M., Hursthouse, M. B. & Wilkinson, G. (1984). J. Chem. Soc. Chem. Commun. pp. 799–800.